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Abstract

An improved state-space analysis of the
CMOS static RAM cell is presented.
Introducing the concept of the dividing line,
the critical charge for heavy-ion-induced upset
of memory cells can be calculated considering
symmetrical as WCII as asymmetrical capacitive
loads. From the critical charge, the upset-rate
pm bit-day for static RANIs can be estirnate.d.

Introduction

To predict the heavy-ion-induced upset rate
of sttitic random access memory (SRAM)
CCIIS, Buchler and Allen [1] develcrpcd an
analytical method based on state-space analysis
[2]. Cell upsets are eventually caused if the
hole-electron pairs generated along the track of
an al h~ particle hitting the memory CC1l, are,

+-CO1 cctcd by the ~verse-biased pn-junction of
an output node. A &MeV al ha particle

---#generates, roughly, one million oTe-electron
pairs corresponding to a charge of 0.16 pC. If
this charge is collected by the reverse-biased
pn-junction of an output node, &his node is
charged, or discharged. If the current pulse
during the alpha hit is short compared to the
response time of the cell, the node set and
release approach [1] can hc used. In this
approach, the output node voltage is set by the
alpha hit, whereaftcr the released CC1l is
analyzed to see if the alpha hit causes an upset
or not, For 5-MqV alpha partichx, the node set
and release approach is justifkd  by the. fact
that, even if the current pulse is best
approximate by a decaying exponential with a
time constant of 1 ns [3], most of the charges
are collected within 200 ps [4],

Here, an improved analysis of the static
RAM-cell in the release mode is presented
which yields better understanding of the RAM-
cell behavior and more accurate expressions of
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the criticfil upset charge. his analysis is b.ascd
on cell behavior close to the meta-stable state
rather than on empirical observations of the
initial slopes of the node voltage curves.

State-space analysis

The core of the CMOS static RAM CCI1 is
the bistable latch or flip-flop, which consists
of two inverters as shown in Fig. 1. The two
coupling nodes, N1 and N2, have effective
capacitances to ground, Cl and C2,
respectively, and a mutual capacitmce Cnl. The
sLIte of the flip-flop is described by the two

Fig. I. Two cross -coup[ed  invert~rs are
used to design a bistableflip-jlop.

node voltages, VI and V2, The bistable flip-
flop has [hrcc steady states: the one-state (O,
VLJIJ), the zero-state (VD1), O) ml the unstable
state (V1M,V2N4), Ususally known as the
mctastable state.

“1’hc dynamic behaviour of the flip-flop is
described by the current equations of the two
nodes, i.e.:

dV1

(

dVl d V2

)
cl-dt-+-c~ dt dt ‘iI.—— - —... (1)

(2)

where i] and iz are the cur~”cnts flowing into________the two nodes N1 and N2._ - . . .. ——.  —.. — -
. . . . . . . . . -----—. ---— -- -
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The two equations closing the system are
governed by Kirchhoffs  current law and gives

il = iPl -iIll (3)
iz =ipz -illz, (4)

where iP1(’V2, V1) and “iP2(V1, V2) are the
currents through the two P-chmmcl transistors
and inl(vz, Vl) and in2(V1, V2) arc t}le
currents through the two N-channel
transistors, respectively.

The three steady state solutions of the
system are given by

@ -inl=O (5)
1P2 - ir12 = O, (6)

where the two equations represent the transfer
curves of the two inverters, as shown in Fig, 2.

If the flip-flop, for any reason such as an
alpha particle hit, is upset from its steady
states, the “return-trajectory” from any given
state, (V10, V20), to onc of the steady states
has to be derived numerically. This is because
of the complicated non-linear voltage
dcpendcncc  of the transistor and capacitor
models, which results in non-linear differential
equations, and which generally cannot be
solved analytically. The most convenient way
to solve the problem is to use a circuit
simulator such as SPICE. A typical example of
such simulations is shown in Fi~. 3.

Equations (1) and (2) giv; directly the
velocity in state space

VD[

2

0

meta-stable
state

‘pl”inl=o
1

V I VDC)

Fig, 2. 7he static transfer curves  of the two
iti verters  in a j7ip-jlop  are ill[4str{ltc{d  in [he (VI,
VI) state plane.

SL7tic memory ccl]

p, dv2)—. —.. . .
~dt’ dtj

fif the dc current-voltage characteristic.: of the
latch, (i1(V2,Vl), i2(V1,V2)), and the node
capacitances are known. Fig, 4 shows the two
velocity components, and Fig. 5 gives a vector
field representation. As illustrated in Fig. 4,
each velocity component is zero along the
corresponding transfer curve (as long as the
rnulua] capacitance can be neglected). For the
steady state solutions both velocity
components are zero. From the velocity vector
ilcld,the  slope, dV~dVl, is known analytically
in any point along each of the return
t.mjectoncs in Fig. 3. The velocity vector field
also allows a crude graphical construction of
the return trajectories by following the
directions given by the vectors as illustrated in
Fig. 5. Note that the return trajectories will
always cross the static transfer curve
characterized by i2=0 horizontally, and the
other static transfer curve (il=O) vertically [5].

Of particular interest with respect to single
event upsets, arc the two trajectories leading to
the rnetastab]e point. These two trajectories
divide the state-plane into two halves and will
serve as a “separatrix” [6] or “dividing line”
during the alpha particle hit. lf this dividing
line is crossed during the hit, the cell will be
upset and change its state during the following
“rc]casc” mode, otherwise it will return to the
s,a.mc state as before. The next section will give
an analytical expression for the dividing line as
a guide for the RAM designer.

.-

5 ~--’-r’-i”’””ia’””-a

0 tA.u&..L.Ludu.Lw.l..bAhLUfAU,LI.4~
o 1 2 3 4 5

VI
Fi<q. 3. SF’ICE-sinwl[Itcd  “returtt-  trojcctori[].v”

to one of tht’ smblc stoles ft’om an arbilr[]ry point
(VIO, VXJ, in the (VI, V?) .vtate  ploiIe.
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.

Fig. 4. Phase-space diagrams for the velocities dV1/dt and dV~dt.

&zi.Es22F\
1, 2. 3, 4?-”-:5,

VI

Fig. 5, The velocity vector jield in the (Vl,

Vz) state plane for C1/C2=0.S and flJ&=.?.3.
Also shown cre a return trajectory and the
separatrices ending in the tnetmtable point.

Analytical Description of Dividing Line

‘1’o derive analytical expressions for the
dividing line, simplified transistor models
must be used. Simulations using different
transistor models suggest that d-m trajectories
leading to the metastable state, i.e. the dividing
Iinc, with very good accuracy can be
approximated by a straighi lirw. To derive an
expression for the slope of this line, transistor
currents il and i2, are linearized around the

mctastable point. Assuming identical invcrters
(except for the capacitive lotids), and
neglecting the mutual capacitance CI[l and the
output conductanccs of the transistors, we
obtain from Eqs (1) and (2),

where gnln and gmp are the transccmductances
in the metasstable point (VM, VM) of (he n- and
P-~hanne~ transistors, respectively. Assuming
a hne.ar rcla(lonship between V2 and VI along
the dividing line,

V2 ‘VM= K (Vl - Vhl), (8)

where K = dV2/dV1, wc obtain

Kn~
<

~
c~” (9)

This result suggests that the RAM cell
enters ~he meta$table state along a straight Iinc

with slopc~~~ and leaves it along another.——
straight line with slope - {C1/C2. The dividing
line is therefore given by

Simulations show that this equation for the
dividing line is a very goo(i approximation of
the simulated behavior. To examine closer lhc
justification of assuming a constant
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transconductarwe  in the saturation region, let and
. us use a modified ShockIcy transistor model P*,

giving the saturation current as i2(Vl) = -y- (V1-VDD-V’IT)2  --2- (vl-v~N)2,

in = k. ‘-v-v-~Y ,
2(1+5”)

(14)
(11)

where for a q-type transistor ~q = -!k. .
I,c

where km is the transistor gain factor, VIN tlw
threshold voltage and an the Taylor series
expansion coefficient of Lhe bulk charge, (ln
standard textbook equations, usually 611=0.)
The transistor is saturated for VDS > VDSA~ =
(VGS-VTN)/(1 -t-sn). The linear region drain
current is given by

Using similar equations for the p-channel
tmnsistor, we can writi the two node currents

1 +oq

For the case of ~rl = ~P = ~, we obfain a
constant trtinsconductance,

b =  
&nn + ~rnp = -fj (V~~ + VTp  -  V’@

(15)
for the whole regionl where all four transistors
arc saturated. Hence, for this region (shown
shaded in I~ig. 6) the linear equation given by
~~ (10) is an exact solution for the dividing

For the general case when ~n~~p, we
obtain from E@ (1) and (2) neglecting Cnl

as
d V2 Cl  i2(V1)

BP Ill ~=c;~’
i 1(V2) = z (V2-WD-W-P)2  --2- (V2-VTN)2

(13) Separating variables,
intcgrtition

cl [pp(VDD+VTP-VI)3 + ~n(V1-VlN)3  - ~p(VDD+VTP-VM)3  - ~~(VM-VTN)3

CZ [Pp(VDD+V’TP-V2)3  + ~n(VQ-VTN)3  -  ~p(vDD~v’I’P-vkf)3  -  ~n(vM-vTN)3

on f3- P1 off
state

t
N2 O~f

A

/ l“, ~”N”
r

P2 off\ –—

—
VTN VDD+VTP VDD

VI
1+’ig. 6. Allfour transistors are saturated in t}w

shadowed area. 8~= 6P= 0.3, VINZ - Vll,= 1 V.

StMic mcnlc)ry cdl

where the me[astablc point
by

<
!&V

‘DL)+V”lP+  ~ TN
v~ =  ‘- - – -” – – –  –  “--

T
1+ *

(16)

wc obtain after

=.

9 (17)

(VM,VM) is given

(18)

~. (17) is valid when all four transistors are
saturmxl. It cm also bc rnadc valid for tumcd-
off transistors, if the negative va]uc of the
cormponding parenthesis is replaced by zero.

. -. —------- . —. -.. . .
1 “his region is given  by
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“I_he previously obtained straight line
“ solution for the case of ~h=J3P, given in Eq,

(10), is simply a special casez of the gencmd
solution.

A pIot of the dividing Iine for the case of

&,/P = 3.3 is shown in Fig. 7 using C1/C2 =
1, 0.?, 0.5, 0.25 and 0.1 as parameter values.
As indicated by Fig. 7, the dividing line is
very close to a straight line also for ~n~~ps.
As an example, the second order deviation in
V2 for VI=VD1) ]s less than 5% for ~1&=3.3
and C1/Cz >0.1.

Comparisons to SPICE simulations show
that the solution of Eq. (17) can bc extended
with srrdl  errors also into regions of the state-
planc where one transistor is linear. if the
current through this transistor is small
compared to the current through the other
transistor of the same inverter. For the
cxamp]e of Fig. 7, where [~11/(3P = 3.3,
transistor PI becomes Iinear along the dividing
line when C1/C2 S 0.39. However, the error is
negligible as long as iPl is less than one tenth
of inl (which is true for C1/C2 > 0.07).

For the limiting case of very small C1/C2
capacitance ratios, the dividing line becomes a
horizontal line through the metastablc state.
The return track from the mctastable state to
one of the stable states coincides with the static
transfer curve (i ~=0). For very large C1/C2
capacitance ratios the limiting dividing line is a
vertical line through the metastable state. The
return track from the metastable state to one of
~he stable states now coincides with the other
static transfer curve (i2=O). See Appendix,
--- ..— — ..— —. —
2 

l%r ~n=~p F~. (17) yiekk

q,(v[)~ + v,~p - V-,-N)  (VZ - VJ =

~~(v~~]  + vl~  - v~) ~1 - vM)2,

from which Eq. (10) can be obtairrcd.  For that  part of
t.hc dividing line that falls outside the shaded region
where all four transistors are sanmk(l,  for instance
when P2 is turned off (for C1/C2<l),  I;q. (2?,) yielrts

C [ [(v, -v-,.@3 - (v~)~)+v~.p-v~f)~ - (vM-vl.N)3]  G

3(:z(VI)[)  + v-l},  - V.1~) (V2  - VM)2,

which  only slifiht.ly  deviat~$  from a stmight liue.
3 It is exactly a stmight line for C1=C2.
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Fig, 7. The dividing line with C1/C2 = 1,
0.7, 0.5, 0.25 and 0.1 m porrmeter.

Critical Charge Wpressions

To calculate the upset-rate of a static RAM
in space, Buchler and Allen used the Petersen
equation [7] which assumes a 10-percent
worst case differential cosmic-ray spectrum.
According to the Petersen equation, the upset
rate (in upsets per bit-day) for a heavy-ion hit
on a q-type reverse-biased pn-junction  of node
i is given by

(Q%)Ri = 5.10-10 AJqi “Xq; 2, (19)

where AJ~i is the area of the reverse-biased in-

junction of node i (in pm2), X~i is the carrier

collection depth of the same junction (in ym)
and QC~i is the critical charge (in pC).

l’hc critical charge for a heavy-ion-induced
upset can be calculated for each reverse-biased
pn-junction  of the RAM cell using the results
from the previous anaiysis.

For C1/C2<l, the critical charges for a hit
of invcrtcr 2 is calculated as follows. With the
RAM cell being in the zero-state, V2=0 and the
drain of transistor P2 is reverse-biased. ‘X”hc
critical voltage, VCP2, for a P2 heavy-ion hit is
obtaincci from the dividing Iinc at V1=V1)l,  [1].
In the one-state, V2=V1,1) and the drain of
transistor N2 is reverse-biased. The critical

6 C2
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voltage, VCn9,, for an N2 heavy-ion hit is..—
. obtained from the dividing line at V1==O [1].

Therefore, the critical voltages can he
obtained from the straight line equation (10) as

vcp2 =v~+
<

c ’ v~I> - vM)& (20)

and

T
!l VM,VCn2, =  VM -  C2 (21)

rcspcctivcl y.
TIC expression for VCP2 of F~. (20) can be

compared to the expression derived by Buchlcr
and Allen. They based their analysis on the
empirical observation that

(22)

at (VI>D, VCP2) in the state-plane. After some
approximations their derivation yielded

VC*2 =v~’+
{

CJ
~2 (vim  - Vm}. (23)

Here, it can be seen that while their
expression for VCP2 only depends on the
threshold voltage of the n-channel transistors,
the new expression in Eq. (20) depends on the
switching voltage of the invcrter. Thereby, the
influence of both the p- and n-channel
transistors are considered, -

■

❑ M

1’ t I 1 I 1 11 11 1 1 I 1 I I&

1 10 100
RELATIVE CURRliNT PLJLSE

Fig. 8. The relutive critical charge fc~r rnem.ory
upst?t versus the r e l a t i v e  c u r r e n t  p u l s e
(nortnnlized to the transistor saturation current).

Stti~ic memory cell

From the critical voltages, VCP2 and VC1)Z,
Iluchlcr and Allen [1] defined the
corresponding critical charges for memory
upset by a P2- and N2-hit as

QCp2 = ~2 vcp2 (24)

and

Qcn2 = C2 (VDD  - VCn2). (25)

rcspcctivcly.
The critical charge is the minimum charge

needed for memory upset, assuming thiit the
charge is collected so rapidly that the voltage
on the other node does not change. This is true
for most memory cells since they, typically,
have a slow response time (>500 ps) and most
of the charge is collected within 200 ps as
shown by [4]. However, if charge is lost
during the alpha hit and, more charge must be
collected to upset the cell, To simulate the cell
during the alpha hit, one must be concerned
with the detailed nature of the current pulse.
For 5 MeV alpha particles, the current puke
can be approximated by a decaying exponential
~,ith a tin~e cons~nt of 1 ns [~]m However, in
most cases, as the simulated cases shown in
Fig. 8, a simple square-wave current pulse is a
good enough first-order approximatkm [8].
The corresponding set and release trajectories
simulated for five different current sources are
shown in Fig. 9.

5 ~-’-l--’””

5
4

2

-o 1 2 3 4 5

VI

~’ig. 9. The set und release trajectories fo]-five
different current puises during the alpha hit.
The cur-rent pulse i,v nortnalized to the
tr{insi.~tor  s{lt14ration current.
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“l”he critical charges for a hit of inverlcr 1
● can bc calculated similarly, at least for

capacitively symmetric RAM CCIIS or when
\ C1/CZ>l.  In order to estimate the critical

charges for N1 or PI hi(s when C1/C2<l, one
has to know how the dividing line continues
into the regions where V1<O and V1>VDD.
Duc to the forward biasing of the drain diodes
N1 or PI, respectively, large restoring
currents il develop, bending the dividing line
almost horizontal outside the frame of Fig. 7.
Consequently, the dividing line will bc
impossible to reach by N 1 or P 1 hits, i. e.
QCN1 and QCP1 become very Mrge and the
ccm-csponding upset rates can be. neglected.

Conclusions

A dynamic description of the charging and
discharging behavior of bis(ablc RAM cells
after single event upsets has bcxm developed,
Stale plane analysis has been shown ‘to be a
useful tool in providing insight into basic
RAM cell behavior, both in the set mode
during alpha particle hit and in the rclcasc
mode after the hit, The state plane has been
shown to bc divided into two halves by a
dividing line that determines to which stable
state the system returns after a hit. Analytic
expressions for the dividing line, and for the
minimum critical upset charges, have been
given.
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Appendix.
b

Generally, Eqs (1) and (2) can he rewritten
as

v~ - VM = K (Vl - VM), (A12)

we ob~?in the slope

(Al)

‘=-&ahm%FT
(A13)

dV2 ~ i2

dt -“C21+G ‘
(A2)

If the mutual capacitance can Ix neglected
compared to the load capacitances, [he
expression for the slope rcduccs to

where

cm
c]l=c]+~

1+ &
(A3)

(A14)

C*
Clz= c2~7;+  c1 +C2

where(A4)

(As)

As expected, this expression rcduccs
(A6) 4 c1 h~n assuming /70further to K = i C2 w =0.

Assuming goMl and letting C2-+m, we obtain
from F!. (A14)Using the following Iincar approximation

of the Lm.nsistor currents,

[

o
K= -i&,‘1 = &n(v2- vM)+g~ ~1 - VM) (A7) (A15)

iz = 
& (VI = VM) + &!o (V2 - VM), (A8)

which confirms an incoming horizontal line to
the rnctastable state and an outgoing line with a
slope given by the reciprocal gain of the
invellcr. Letting C1-P, we obtain

where gm = ~mn + g~p is the SUm of the n-
and p-channel transconductances  in the
metastable point (VM, VM) and go = gon + gop
is the sum of the output conductance, wc
obtain

K=
[-

- &rl ‘ (A16)
%

$!b .3(V.2 -  VM) + bz(vl -  VM)
d V1 ‘al(V2, - VM) + bl(Vl - VM) “ ‘*9 )——.

Here which confirms an incoming vertical line to the
mctastahlc state and an outgoing Iinc with a
slope given by the gain of the inverter.

Finally, if the mutual capacitance cannot be
neglected, we obtain assuming gt) = O

-&_+ &Y_ = .tk. + X-Q- (Al ~)
a l  -Cll C12’ a~ Czl C22’

b ] =&-+- ~!2, &..—. b2 = ~21 +/;2 ( A l l )

(A17)

Assuming a linear reIaLionship betwcxm V2

and VI along the dividing line, i. c.
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. Single Event IJpset Behavior of CMOS Static RAM cells

Kjcll 0. Jeppson”,  Udo Licnewcg** and Martin G. Buchler**

Abstract

An improved state-space analysis of the
CMOS static RAM cell is presented.
Introducing the concept of the dividing line,
the critical charge for heavy-ion-induced upset
ofrnemor-ycell scan becalctrlate  dconsidcring
symmetrical as WCI1 as asymmetrical capacitive
loads. From the critical charge, the upset-rate
per bit-day for static RAMs c,an be e-stimatcd,

Introduction

To predict the htxtvy-ion-indtrccd upset rate
of static random access mcrnory (SRAM)
CCIIS, 13uc.hler and Allen [1] developed an
analytical method based on state-space analysis
[2]. Cell upsets are eventually caused if the
hole-electron pairs generated along the track of
an alpha particle hitting the memory CCI1, are
col]cctcd by the mwerse-biased pn-juncticrn of
an output node. A &MeV al ha particle

*generates, roughly, onc million o e-electron
pairs corresponding to a charge of 0.16 pC. If
this charge is collcctcd by the reverse-biased
pn-junction of an output node, this node is
charged, or discharged. If the, current pulse
during the alpha hit is short compared to the
response time of the cell, the node set and
release approach [1] can bc used. In this
approach, the output node voltage is set by the
alpha hit, whereaftcr the released CCI1 is
anaIyzed to see if the aIpha hit causes an upset
or not. For 5-MeV alpha particles, the node set
and relea,=roach is justified by the fact
that, even if the current pulse is best
approximate by a decaying exponential with a
time constant of 1 ns [3], most of the charges
are collected within 200 ps [4].

IIere, an improved analysis of the static
RAM-ceil in the release mode is presented
which yields better understanding of the RAM-
cell behavior and more accurate expressions of

*  Kjcll  0. Jeppson  is wilh Clmlmcrs  Llniversity  of
Technology, Deparrmcnt of Solid-S@tc Electronics, S-
41296 CWeborg,  Sweden.

** IJdo 1,icneweg  and Marlin  G. Iluchler  are wilt) the
(&@QI Space MicroelccLronics  Technology, Jet—... —
Propulsion Iaboramry,

—.
Cal i fowlfij”tu  [C of

I’cchnology,  Paswkma,  CA 91109, (JSA,

the critical upset charge. Ilis analysis is based
on cell behavior close to the recta-stable state
rather than on empirical observations of the
initial slopes of the node voltage curves.

State-space analysis

The core of the CMOS static RAM CCI1 is
the bistablc latch or flip-flop, which consists
of two inverters as shown in Fig. 1. The two
coupling nodes, N1 and N2, have effective
capacitances to ground,  Cl and C2,
respectively, and a mutual capacitance Cnl, The
state of the flip-flop is described by the two

I VDD p’ Vm

Fig. 1. 7ko cross-coupled invcrters  are
used to design  a bistoble  jlijj-jlop.

node voltages, VI and Vz. The bistatde flip-
flop has three stctidy states: the one-state (O,
VLJ1)), the zero-state (VDIJ, O) and the unsmble
state (Vl M, V2M), ususally known as the
mctastable St.fit&3.

The dynamic behaviour of the flip-flop is
described by the current equations of the two
nodes, i.e.:

(

dV, d V2c1 ‘;l + cm ~~- - d[——
)

= il (1)

(

( I V2  (iv*
C2 ‘:-2 + & ‘d~  -  dt—---

)
= i~, (2)

where i] and iz arc the c~~rrcn[s flowing into
the two nodes N1 and NQ. - -.. .—. __-——.=

-. ——-. —-— - .—. —— -
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l’hc two equations closing the system are
, governed by Kirchhoffs current law an(i gives

I

i l = ipl - iIil (3)
iz = iPz - il)z, (4)

where iP1(*V2, V1) and “iP2(V1, V2) are the
currents through the two P-channel transistors
and illl(v~, VI) and in2, (Vi, V2) arc the
currents through the two N-channel
transistors, respectively.

The three steady state solutions of the
system are given by

il.P -inl=O (5)
1P2 - ir,2 = O, (6)

where the two equations represent the transfer
curves of the two inverters,  as shown in Fig. 2.

If the flip-flop, for any reason such as an
alpha particle hit, is upset from its steady
states, the “return-trajectory” from any given
state, (V10,V20),  to OJIC of the steady states

has to be derived numerically. This is because
of the complicated non-linear voltage
dcpendcncc of the transistor and capacitor
models, which results in non-linear differential
equations, and which generally cannot be
solved analytically. The most convenient way
to solve the problcm is to usc a circuit
simuIator such as SPICE. A typical example of
such simulations is shown in Fig, 3.

Equations (1) and (2) give directly the
velocity in state space

)ne -
;tate

i - ip2 n2 = o—

meta-stable
1

state

zero-

V1 VDD

Fig. 2. 7he static transfer curves  of the two
inverters  in a j7ip-jlcyl  are illustrated in the (V],
V2) state plane.

sLItic mcmmy cd]

(dVl dV2_.—.
dt ‘ -  dt”” )

!!if the dc current-voltage characteristic “of the
latch, (il(V2,V1), i2(V1,V2)), and the node
capacitances are known. Fig. 4 shows the two
velocity components, and Fig, 5 gives a vector
ficid representation. As illustrated in Fig. 4,
each velocity cornporwnt is zero along the
corresponding transfer curve (as long as the
mutual capacitance can be neglected). For the
steady state solutions both velocity
components are zero. From the veIocity vector
field,.the slope, dV2/dVl, is known analytically
in any point along each of the return
trajectories in Fig. 3, The velocity vector field
also allows a crude graphical construction of
the return trajectories by following the
directions given by the vectors as illustrated in
Fig. 5. Note that the return trajectories will
always cross the static transfer curve
characterized by i2=0 horizontally, and the
other static transfer curve (i]=O) vertically [5].

Of particular interest with respect to single
event upsets, arc the two trajectories leading to
the metastable point, These two trajectories
divide the state-plane into two halves and will
serve as a “separatrix” [6] or “dividin~ line”
during the alpha particle hit. lf this dividing
line is crossed during the hit, the cell will be
upset and chan~c its state during the following
“rclcasc” mode, otherwise it will return to the
sarnc state as before. The next section will give
an analytical expression for the dividing line as
a guide. for the RAM designer.

.-

OLLLLLl~hd.uLI  ~Lld.IA@.&bd
o i 2 3 4 5

VI
Fig. 3. .7f’lCE-,~irtl[ll[lt[’(1  “retlirn-trajec  tories”

to one of the stable states fl.om un arbitrary point
(VIO, VXJ, in the (VI, V2) state plane.
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.

Fig. 4. Phase-space diagrams for the velocities dV#lt and dV-y’dt.
, 1. , , 1 15. I I
T L--- F----:fi

0,
00 1. 2.

v13’

Fig. 5, The velocity vector field in the (Vl,

VJ stote plane  for C#CI=O..5 and &/&=.?.3.
Also  shown  cre a return trajectory and  the
separotrices  ending in the metmtabk point.

Analytical Description of Dividing Line

To derive analytical expressions for the
dividing line, simplified transistor models
must be used. Simulations using different
transistor models suggest that the trajectories
leading to the metastablc state, i.e. the dividing
Iinc, with very good accuracy can be
approximated by a straight line. To derive an
expression for the slope of this line, transistor
currents il and i2, are linearized around the

metastable point. Assuming identical invcrters
(except for the capacitive loads), and
neglecting the mutual capacitance Cm and the
output conductance of the transistors, we
obtain from Eqs (1) and (2),

where  ~mn md gIIlp are the transconducttances
in the metastable point (VM, VM) of the n- and
p-$hannel transist~rs, respec~ively.  Assuming
a hnear rclat~onsh]p between V2 and V 1 along
the dividing line,

Vz - VM = K (Vl - VM), (8)

where K = dV2/dVl, wc obtain

(9)

This result suggests that the RAM cell
cnlers the. metas~able s~~te along a .sLraight line
with slope {C~~ and leaves it along another

straight line with slope - ~~”2. T’hc. dividing
line is therefore given by

(lo)

Simulations show that this equation for the
dividing line is a very good approximation of
tie simulated behavior. To examine closer the
justifica~ion o f  a s s u m i n g  a consttin~
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transccmductance in the saturation region, let
, us use a modified Shockley transistor model

giving the saturation current as
1

,

(11)

where kn is the transistor gain factor, Vlm the
threshold voltage and 6. the Taylor series
expansion coefficient of the bulk charge, (In
standard textbook equations, usually 8n=0.)
The transistor is saturated for VIJS > VDSA~ =
(V~S-VTN)/(1 +~n). The linear region drain
current is given by

[ 1
ill== kll (V~s-Vq’N)VDS - (l-t-&##- (12)

I

1

Using simi,lar equations for the p-;hannel
transistor, we can write the two node currents
as

EL? A-i
il (V2)  = ~ (V2-VDD-VTP)2  - ~ (V2-VIN)2

(13)

and

?P Piz(vl) =-2- (V] -VI>D-VU-P} 2- -2Q (VI-V7N)2!
(14)

%where for a q-type transistor ~q = ‘– .
1 +&q

For the case of ~n = ~P = ~, we obtain a
constant transconductance,

gm “ gmn ‘“ grnp = ‘~ (V~D + VW’ - VTN)~
(15)

for the whole region] where all four transismrs
arc saturated. Hence, for this region (shown
shaded in Fig. 6) the linear equation given by
~~ (10) is an exact so]uuon for the dividing

For the general case when ~n~~p, we
obtain from F~s (1) and (2) neglecting CIn

d V2  Cl i2(V1)—— =-—
dV1 C2  ~“ (16)

Separating variables, wc obtain after
integration

CI [PP(VDD+-VTP-VI)3  +- fh(VI-VTN)3  - f$NDD+VwVM)3  - lh(VM-VTN)3]=

C2 [~p(VDD+VTp-V2)3 +- ~.(V2-VrI’N)3 - PP(VIJD+VIP-VM)3  - I%WM-VTN)3], (17)

I
—

one- P1 Off

7
4

P2 offx

J zero-

1 N1 Off state

v-m VDD+VTP VDD
vi

Fig. 6. All four transistors are saturated in the

shadowed area. i$n= & 0.3, v~~= - v~’p=  1 v.

where the metastablc point
by

V1)[)+V.l.P+& ~P!! VTN
VM =: ---– ——

61+ :

(VM,VM)  is given

(18)

Eq. (17) is valid when all four transistors are
sa[urakxl. It can also bc made valid for tun~cd-
off transistors, if the negative value of the
corrcsponciing parenthesis is replficccl by zero.

-.. . ..— -. . ———— .

1 ‘[his region is given by
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“~hc previously obtained straight line
“ Solution for the case of ~n=~P, given in Eq.

(10), is simply a special case2  of the gerrcral
soluticm.

A plot of the dividing line for the case of
&)/~ = 3.3 is shown in Fig. 7 using C1/C2 =
1, 0.?, 0.5, 0.25 and 0.1 as parameter values,
As indicated by Fig. 7, the dividing line is
very close to a straight line also for ~n#~Ps.
As an example, the second order deviation in
V2 for V~=VDD IS less than 5% for &/~p=3.3
and C1/C2 20.1.

Comparisons to SPICE simulations show
that the solution of Eq. (17) can be cxtcndcd
with S:IM1l errors also into regions of thi state-
planc where one transistor is linear, if the
current through this transistor is small
compared Lo the current through the other
transistor of the same inverter. For the
example of Fig. 7, where ~,l/~P = 3.3,
transistor P1 becomes linear along the dividing
line when C1/C2 < ().39. However, the error is
negligible as long as ipl is less than one tenth
of inl (which is true for C1/C2 2 0.07).

For the limiting case of very small C1/C2
capacitance ratios, the dividing line becomes a
horizontal line through the metastablc state.
The return track from the mctastable state to
one of the stable states coincides with the static
transfer curve (i l=O). For very large C1/C2
capacitance ratios the limiting dividing line is a
vertical line through the metastable state. The
return track from the metmtable state to one of
the stable states now coincides with the other
static transfer curve (i2=O). Sec Appendix,
.—— — ._ _____ .. ____
2 For ~n=~P, IZZd (17) yields

~2(vDD + v~p - v,l~) (V2 - v# =
c1 (v~)r) + VII, -  vTN)  (VI  -  VM)2,

from which Eq. (10) can be bbtaincd.  For that part of
the divitling  line that falls outside the shaded region
where all four transistors are saturated, for instance
when E? is turned off (for C1/C2<l),  Eq. (22) yiekls

C , [(V1 -V1N)3 - (VL)lJ+V1l,-VM)~  - (VM-VTN)3]  =

3(:2(v1)1)  + v-l},  - vrlN)  (vz - Vk1)2,

which only slightly deviates from a straight line.
3 It is exactly a Stmight line for C1=C2.

5 . 0

4 . 0

3 . 0

V2

2 . 0

i.o

f16c2
.

0,7
0.5

0.25

0.1

()() EZ2—---.---Jz e r o
state

. 0.0 :.0 2.0 3.0  4“ 0 ~.o

Fig. 7, The dividing line with C1/C2 = 1,
0,7, 0.S, 0.25 and 0,1 as parameter.

Critical Charge Expressions

To calculate the upset-rate of a static RAM
in space, 13uchler and Allen used the Petersen
equation [7] which assumes a 10-percent
worst case differential cosmic-ray spectrum.
According to the Petersen equation, the upset
rate (in upsets per bit-day) for a heavy-ion hit
on a q-type reverse-biased pn-juncticm of node
i is given by

Ri=5010 %-2()‘lo AJqi –-.
Wqi ‘

(19)

where AJ~i is the area of the reverse-biased in-

junction of node. i (in pm2), X~i is the carrier
collection depth of the same junction (in j.tm)
and QC~i is the critical charge (in pC).

The critical charge for a heavy-ion-induced
up.set can be calculated for each reverse-biased
pn-junction  of the RAM cell using the results
from the previous analysis.

For C1/C2el, the critical charges for a hit
of invcrtcr 2 is calculated as follows. With the
RAM CC1l being in the Zero-state, V2=0 ancl the
drain of transistor P2 is reverse-biased. The
critical vol~~ge, VCP2, for a P2 heavy-ion hit is
obtairrcd from the dividing line at V1=V1,l, [1].
In the one-state, V2=VI)I} and the drain of
transistor N2 is reverse-biased. The cri[ical

static nlmmy cell May 19, 1993



voltage, VCn2, for an N2 heavy-ion hit is
. obtained from the dividing line at V1=O [1].

Therefore, the critical voltages can be
obtained from the straight lirw equation (10) as

VC*2 =vM+
<

C1 vDI> - vM)@ (20)

and

T
21 VM,VCn2 =  VM  -  ~2 (21)

respectively.
“]’he expression for VCP2 of F~. (20) can be

compared to the expression derived by Buchler
and Allen. They based their analysis on the
empirical observation that

CJVJ v ’
dVl  =  ‘VDD (22)

at (VDI>, VCP2) in the state-plane. After sornc
approximations their dcrivaticm yielded

vcp2 =v~+
-T

CJ
& (-vtm -  VTN). (23)

Here, it can be scc”n that while their
expression for VCP2 only depends on the
threshold voltage of the n-channel transistors,
the new expression in Eq. (20) depends on the
switching voltage of the invcrtcr.  Thereby, the
influence of both the p- and n-channel
transistors are considered, -

L
1 10 100

RELATIVE CIJRRENT PIJLSE
Fig. & The relutive critical charge for memory
lt~~set  v e r s u s  the reliltive  c u r r e n t  pulse
(nor-rnaliztvi to the transistor saturation current).

Sbtic memory CCII

l~mn~ the critical voltages, VCP2 and VCn2,
Buehlcr  and Allen [1] defined the
corresponding critical charges for memory
upset by a P2- and N2-hit as

Qcp2 = ~2 vcp2 (24)

and

~n2 =  C2 (VDD  -  V~n2), (25)

respectively.
The critical charge is the minimum charge

needed for memory upset, assuming that the
charge is collected so rapidly that the voltage
on the other node does not change. Ilis is true
for most memory cells since they, typically,
have a SIOW response time (>500 ps) and most
of the charge is collected within 200 ps as
shown by [4]. However, if charge is lost
during the alpha hit and, more charge must be
collected to upset the cell. To simulate the cell
during the alpha hit, one must be concerned
with the detailed nature of the current pulse.
For 5 MeV alpha particles, the current pulse
can be approximated by a decaying exponential
with a time constant of 1 ns [3]. However, in
most cases, as the simulated cases shown in
Fig, 8, a simple square-wave current puke is a
good enough first-order approximation [8].
The corresponding set and release trajectories
simulated for five-different current so~rces are
shown in Fig. 9.

5
4

3

2

2

i

n wl.LuLLuLuLLuAwLAL.u.LL~
“o 1 2 3 4 5

V I

b’ig. 9. Thg sel and release  trajectories for five
different current pulses during the alpha hit.
T h e  current pulse i,~ rtornlflli~ecl  t o  t h e
transistor saturation current.
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“Irhc critical charges for a hit of inve.rtcr 1
* can bc calculated similarly. at least for

capacitively symmetric RAM CCIIS or when
\ C1/C2>l.  In order to estimate the critical

charges for N1 or PI hits when C1/C2<l, onc
has to know how the dividing line continues
into the regions where V1<O and V1>VrjD.
DUC to the forward biasing of the drain diodes
N1 or PI, respcctivcly,  large restoring
currents il develop, bending the dividing Iinc
almost horizontal outside the frame of Fig. 7.
Consequently, the dividing line will bc
impossible to reach by N1 or PI hits, i. e.
QCN1 and QCpl become very Mrge and the
corresponding upset rates can be neglected.

Conclusions

A dynamic description of the charging and
discharging behavior of bistablc RAM cells
after single event upsets has been dcvclopcd,
Stale plane analysis has been shown ‘to be a
useful tool in providing insight into basic
RAM ccl] behavior, both in the set mode
during alpha particle hit and in the rekasc
mode, after the hit. The state plane has been
shown to bc divided into two halves by a
dividing line thut determines to which stable
state the system returns after a hit. Analytic
expressions for the dividing line, and for the
minimum critical upset charges, have been
give]].
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Appendix,
b

Generally, Eqs (1) and (2) can be rewritten. as

K!!l ..4 +. _!2_
dt Cll C12

cff_& ~
dt ‘“ C21 + C22 ‘

where

Cn,C]]=cl+ ~
1+ &

C*
C12  = C2 q + c1 +- C2

(Al)

(M)

(M)

(A4)

c-mC22 = C2 + “—
1+. cm

c1

(A6)

Using the following linear approximation
of the transistor currents, .

il = ~rn (V2 - VM) + go (v] - VM) (A7)

where gm = glnn + gmp is the sum of the n-
and p-channel transconductances  in the
melastable point (VM, VM) and go = gon -t- gop
is the sum of the output conductance, wc
obLlin

:!!! . S2x.!Lz - VM) + b2(Vl - VM)
dVl al(V2  - V~) + b~(Vl - V~) “ (A9)

Here

&Jl E& a, - -g!n. + .&2_ 4al = ~11 +  C12! - -  C21 C22’ (*]o)

Assuming a linear rekitionship bctwccn V2
and V1 along the dividing line, i. c.

V2 - VM = K (VI - VM), (A12)

we ob~lin th~ slope

—.

If the mutual capacitance can bc neglected
compared to the load capacitances, the
expression for the slope rcduccs to

‘=’--’ (A14)

where

As expected, this expression reduces

<
9 when assufurther to K = ~ C2 rning gO=-O.

Assuming godl and letting C2–+.=, we obtain
from F~. (A14)

! o
K= -~Q,

grn
(A15)

which confirms an incoming horizontal line to
the rnctastable state and an outgoing line with a
slope given by the reciprocal gain of the
invcrtcr.  Letting Cl—)-, we obtain

K=
{w

- &m v (A16)
go

which confirms an incoming vertical line to the
metastablc state and an outgoing Iinc with a
slope given by the gain of the inverter.

Finally, if the mutual capacitance cannot be
neglected, we obtain assuming gc~ = O

(A17)
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